

 Navigation

 	
 index

 	LispSyntax.jl stable documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/lispsyntaxjl/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/lispsyntaxjl/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	LispSyntax.jl stable documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.4.

 search.html

 Navigation

 		
 index

 		LispSyntax.jl stable documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

LICENSE.html

 Navigation

 		
 index

 		LispSyntax.jl stable documentation »

 The cl.jl package is licensed under the MIT “Expat” License:

Copyright (c) 2014: Wade Shen.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

README.html

 Navigation

 		
 index

 		LispSyntax.jl stable documentation »

LispSyntax.jl: A clojure-like lisp syntax for julia

[image: Join the chat at https://gitter.im/swadey/LispSyntax.jl] [https://gitter.im/swadey/LispSyntax.jl?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]
[image: Build Status]

This package provides a julia-to-lisp syntax translator with
convenience macros that let you do this:

lisp"(defn fib [a] (if (< a 2) a (+ (fib (- a 1)) (fib (- a 2)))))"
@test lisp"(fib 30)" == 832040
@test fib(30) == 832040

LispSyntax.jl is implemented as an expression translator between
lisp/clojure-like syntax and julia’s AST. Julia’s compiler, JIT and
multiple-dispatch infrastructure is used for code generation and
execution. Because of this, LispSyntax.jl is not really clojure or lisp in
most meaningful ways. The semantics are entirely julia-based (which
are very similar to scheme/lisp in many ways). The net result is that
LispSyntax.jl is really an alternative S-expression-like syntax for julia,
not an implemention of clojure or lisp.

Special Forms

		(def symbol init)

		(quote form)

		(defn symbol [param*] expr*)

		(defmacro symbol [param*] expr*)

		`(lambda [param] expr)``

		`(fn [param] expr)``

		(let [binding*] expr*)

		(global symbol*)

		(while test expr*)

		(for [binding*] expr*)

		(import package*)

Notable Differences

		Symbol names cannot have -, *, /, ? ... - Julia symbol naming is used for
everything, as a result, Julia syntax restrictions are maintained
in LispSyntax.jl.

		Reference to global variables in function scopes - Julia requires
declaration of global symbols that are referenced in function
scope. Because of this functions need to declare which symbols are
global. This is done via the special form (global symbol*).

		Binding forms not implemented - Clojure has very awesome
destructuring binds that can used in most special forms requiring
bindings (e.g. let, fn parameter lists, etc.). This is not
currently implemented.

		Lack of loop/recur - Currently, this is not implemented. As with
Clojure, julia does not currently support TCO, so something like
this may be needed (but a macro-implementation of tail call rewriting may be
more appropriate for julia).

		Optional typing - Currently not implemented.

		Method definition - Also not currently implemented. If
implemented it will probably not be a full implementation of
Clojure’s sophisticated dispatch system.

		Macros differences - Macros defined in LispSyntax.jl look like
standard Lisp macros but because expressions are special objects in
julia, S-expressions returned from macros require a special
translation step to generate julia expression trees. The result is
that LispSyntax.jl macros are directly translated into Julia macros and
must be called via special syntax (e.g. (@macro expr)).

		Julia’s string macro dispatch not supported (yet) - for macros
like @r_str which in Julia can be called via r"", it is
currently necessary to call these via standard macro syntax:
(@r_str "string")

TODO

		Support for exceptions: this is straight forward but not currently implemented.

		Optional typing to support method definition

		Structs and aggregate types

		Special dispatch for string macro forms

		Modules

		import vs. using vs. include – only using is currently
implemented and confusingly, it matches Clojure’s import form.

		varargs and named arguments

 © Copyright 2016.
 Created using Sphinx 1.3.4.

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

